Table S3. Oligonucleotides used in this study

3	Strain/Gene 1	Primer name	Sequence (5'->3'; Restriction sites underlined)		
4	For construction of deletion mutants				
5	$\Delta flaABCD$	flaA-upF	ACGC <u>GTCGAC</u> GCTAGCGACGTACATCAACGGTC		
6		flaA-upR	AA <u>CTGCAG</u> GCTGTGCGGTCATTGCTGACACG		
7		flaA-downF	AA <u>CTGCAG</u> TCTTAGCTTGTTGGGCTAATACAG		
8		flaA-downR	GC <u>TCTAGA</u> GACAACTTTGCTGACCATGGAG		
9		flaB-upF	CCG <u>CTCGAG</u> TGCGAAAGCCGGCGATGATATCGA		
10		flaB-upR	CG <u>GGATCC</u> TCACTGCCATGATGAATTCTCC		
11		flaB-downF	CG <u>GGATCC</u> CTCAGCGCTAAGTCTACTAGGCT		
12		flaB-downR	$C\underline{GAGCTC}GATGTTGGTGGTCTCTGTCATTGC$		
13		flaC-upF	CC <u>CTCGAG</u> CATTCACTGCCATGATGAATTCTCC		
14		flaC-upR	CG <u>GGATCC</u> CTGATTTTGCGAAGGAAACGACGC		
15		flaC-downF	CG <u>GGATCC</u> CGTTAGTGCTTACTGTTACAGCC		
16		flaC-downR	C <u>GAGCTC</u> TCGGTGTCTGATGCCAATGCC		
17		flaD-upF	ACGC <u>GTCGAC</u> CTGTCTCCAGGCTTAAGCGAGATC		
18		flaD-upR	CG <u>GGATCC</u> GCCTACTAGGCTAATCTCTGAGC		
19		flaD-downF	CG <u>GGATCC</u> CGCTGTGCTGTCATTGCTGCTACG		
20		flaD-downR	GC <u>TCTAGA</u> GCTCTCTCATCTCTCACCTGC		
21	$\Delta flaEF$	flaE01-upF	ACGC <u>GTCGAC</u> CGCAGAGCACTCTAAGTAATCTGC		
22		flaE01-upR	CG <u>GGATCC</u> GCCCCAGGCAGTGCAATTGGATTGC		
23		flaE01-downF	CG <u>GGATCC</u> GCCTCTGAGCGACCATCGCAGAC		
24		flaE01-downR	C <u>GAGCTC</u> GACATGCGCTCTGACAACGTG		
25		flaF-upF	CCGCTCGAGGCGCCTTCAACGGATGTGGATGTG		
26		flaF-upR	CG <u>GGATCC</u> CGGTGATCGCCACAACTCTTGGTCC		
27		flaF-downF	CG <u>GGATCC</u> GGGATAAGCGCCGGAGTGACTGG		
28		flaF-downR	$C\underline{GAGCTC}GCAATCGTCGTCAAGTCGTTGTCGCC$		
29	flaE::nptI	flaE-up	ACGC <u>GTCGAC</u> GTGAGCAACCTAAGATAGCAATCC		
30		flaE-down	C <u>GAGCTC</u> GGAGAGGGATATCGATTAAATGG		
31	ΔflaF	flaF-upF	CCG <u>CTCGAG</u> GCGCCTTCAACGGATGTGGATGTG		
32		flaF-upR	CG <u>GGATCC</u> CGGTGATCGCCACAACTCTTGGTCC		

33		flaF-downF	CG <u>GGATCC</u> GGGATAAGCGCCGGAGTGACTGG		
34		flaF-downR	$C\underline{GAGCTC}GCAATCGTCGTCAAGTCGTTGTCGCC$		
35	$\Delta flaJ$	flaJ-upF	C <u>GTCGAC</u> GATCCTACGACCGGTCAAAA		
36		flaJ-upR	CG <u>GGATCC</u> CCGCGCATAGTATTCCTCTT		
37		flaJ-downF	CG <u>GGATCC</u> GGCTGCGGATATTGGAATGT		
38		flaJ-downR	GC <u>TCTAGA</u> AAGAGGGTATTCTTACGTGC		
39	$\Delta f lhA$	flhA-upF	AGTC <u>GGGCCC</u> GGCGGACGTTCCGACCGCGG		
40		flhA-upR	AA <u>CTGCAG</u> GGCTGGTACTGAACGTTGGGGG		
41		flhA-downF	AA <u>CTGCAG</u> GGCGACTCAGGAGCAAGAGCTC		
42		flhA-downR	GG <u>ACTAGT</u> CGTCTTTCCACTTCCTGCCAC		
43	For construction of complementation plasmids				
44	flaE	flaE-comF	${\tt CG}\underline{\tt GGATCC}{\tt ATGGTTTCACTCAATACCAACGTGTCTGC}$		
45		flaE-comR	GG <u>GGTACC</u> GAGCAACCTAAGATAGCAATCCAATTGC		
46	flaF	flaF-comF	CCC <u>AAGCTT</u> CAGGACCAATATTTGTGGCG		
47		flaF-comR	CG <u>GGATCC</u> GTCACTCCGGCGCTTATCCC		
48	flhA	flhA-comF	${\tt CCC} \underline{{\tt AAGCTT}} {\tt ATGGCTAAGAAATTTACTCTGCCG}$		
49		flhA-comR	CG <u>GGATCC</u> TCAGTTACCCACAGCCTGTAC		
50	For construction	of <i>luxAB</i> -based tra	nscription reporters		
51	flaA	flaA_p-F	GG <u>GGTACC</u> CGTCGAAGAGCCGAATCAAAGATAC		
52		flaA_p-R	GC <u>TCTAGA</u> GCGGTCATTGCTGACACGTTAGTG		
53	flaB	flaB_p-F	GG <u>GGTACC</u> CAGATTATGCGAAGGAAACCACGC		
54		flaB_p-R	GC <u>TCTAGA</u> GGTAACGCTGTGCTGTCATTGC		
55	flaC	flaC_p-F	GG <u>GGTACC</u> CGCAGCTCGCATTTGGTAAAAC		
56		flaC_p-R	GC <u>TCTAGA</u> GCGGATACGTTAGTGCTTACTG		
57	flaD/E	flaD_p-F	GG <u>GGTACC</u> GGCAGGTACTTCTATTCTTGCTC		
58		flaD_p-R	GC <u>TCTAGA</u> CTGTGCTGTCATTGCTGCTACG		
59	flaE	flaE_p-F	GG <u>GGTACC</u> GGACAACATCAACGAGAACGTGAAC		
60		flaE_p-R	GC <u>TCTAGA</u> GCGACCATCGCAGACACGTTGG		
61	flaF	flaF_p-F	GG <u>GGTACC</u> GGGCTTAAGATTGTTCGTCACAGC		
62		flaF_p-R	GC <u>TCTAGA</u> GCGACAAGTGCTGCCACATTGG		
63	For construction of overexpression plasmids for recombinant proteins				
64	rFlaA	flaAexp-F	CG <u>GGATCC</u> ATGCGCGGTTCATTACAGGC		

65		flaAexp-R	CCC <u>AAGCTT</u> TCACGCCGCTGTATTAGC
66	rFlaB	flaBexp-F	CG <u>GGATCC</u> ATGGCAGTGAATGTAAATACAAACG
67		flaBexp-R	AA <u>CTGCAG</u> TCTGTCTAGTTAAGGCGATTAGCC
68	rFlaC	flaCexp-F	CG <u>GGATCC</u> ATGACTGCGCAACGTTATCTAAACAAAGCG
69		flaCexp-R	AA <u>CTGCAG</u> CAGACACAGGATTACTATTAGCCC
70	rFlaE	flaEexp-F	CG <u>GGATCC</u> ATGGTTTCACTCAATACCAACG
71		flaEexp-R	GG <u>GGTACC</u> GTGAGCAACCTAAGATAGCAATCC
72	rFlaF	flaFexp-F	CG <u>GGATCC</u> GTGGCGATCACCGTTAATACCAATGTGG
73		flaFexp-R	AA <u>CTGCAG</u> AGTCACTCCGGCGCTTATCCCAGC
74	$rFlaA_{vc}$	vcflaA-F	CG <u>GGATCC</u> ATGACCATTAACGTAAATACC
75		vcflaA-R	${\tt CC}\underline{{\tt GAGCTC}}{\tt CTACTGCAATAACGAGATTGCAGAGTTTGG}$
76	$rFlaE_{vc}$	vcflaE-F	CG <u>GGATCC</u> ATGGCCATGACGGTAAATACC
77		vcflaE-R	CCC <u>AAGCTT</u> TTAATTACGCAGCAAAAACAGCAC
78	$rFlaC_{vp}$	vpflaC-F	CG <u>GGATCC</u> ATGGCTGTAACAGTTAGTACTAACG
79		vpflaC-R	CCC <u>AAGCTT</u> CTACAATAGTGACATTGC
80	$rFlaE_{vp}$	vpflaE-F	CG <u>GGATCC</u> ATGGTCTCTTTAAATACCAATGTTGCCGC
81		vpflaE-R	CCC <u>AAGCTT</u> TCAACTGAGCAAGCCTAGTGC
82	$rFlaF_{vp} \\$	vpflaF-F	CG <u>GGATCC</u> TTGGCTATCACCGTTAATACC
83		vpflaF-R	CCC <u>AAGCTT</u> CTAGCCAAGCAAGGTAAGAGC
84	For construction	of Bacterial Two-H	lybrid system plasmids
85	flaB	pKT25-FlaB-F	AA <u>CTGCAG</u> GGATGGCAGTGAATGTAAATAC
86		pKT25-FlaB-R	GATC <u>GGTACC</u> TTAGCCTAGTAGACTTAGCGCTG
87	flaE	pKT25-FlaE-F	GATC <u>TCTAGA</u> GATGGTTTCACTCAATACCATCGTG
88		pKT25-FlaE-R	GATC <u>GGTACC</u> TAAGATAGCAATCCAATTGC
89	flaF	pKT25-FlaF-F	GATC <u>TCTAGA</u> GGTGGCGATCACCGTTAATACC
90		pKT25-FlaF-R	GATC <u>GGTACC</u> TTATCCCAGCAAGGTCAACGC
91	flgL	pKT25-FlgL-F	GC <u>TCTAGA</u> GATGATTAGCCGTATCGCCAGTTTCCAC
92		pKT25-FlgL-R	GG <u>GGTACC</u> CCGTCATCTCATTCAGAGACGGTTCG
93	fliD	pKT25-FliD-F	GC <u>TCTAGA</u> GATGAGTTTAGGCCCTTTGGGG
94		pKT25-FliD-R	GG <u>GGTACC</u> GTCATGCGTTACTATCCCAGAGCG
95	flaB	pUT18c-FlaB-F	AA <u>CTGCAG</u> TGGAGAATTCATCATGGCAGTG
96		pUT18c-FlaB-R	CG <u>GGATCC</u> GTCTAGTTAAGGCGATTAGCC

97	flaE	pUT18c-FlaE-F	GATC <u>TCTAGA</u> GATGGTTTCACTCAATACCATCGTG	
98		pUT18c-FlaE-R	GATC <u>GGTACC</u> TAAGATAGCAATCCAATTGC	
99	flaF	pUT18c-FlaF-F	GATC <u>TCTAGA</u> GGTGGCGATCACCGTTAATACC	
100		pUT18c-FlaF-R	GATC <u>GGTACC</u> TTATCCCAGCAAGGTCAACGC	
101	For RT-PCR of an flaDE transcript			
102	flaD	flaD-F	CCATGCAATCAGCAACTTGGA	
103		flaD-R	TTAGCCTAGTAGGCTTAGCGCTG	
104	flaE	flaE-F	ATGGTTTCACTCAATACCAACGTG	
105		flaE-R	TTTTTTTGGGTTTCAGCTAC	
106				

¹Detailed procedures for mutant construction

(i) Construction of *flaABCD* deletion mutant. A *flaB* upstream region of 820-bp was amplified from the genomic DNA of *V. vulnificus* MO6-24/O using two primers, flaB-upF and flaB-upR. The PCR product was then cloned into a plasmid, pBlueScript SKII(+) to produce pMflaB01. A 550-bp DNA fragment containing downstream region of the *flaB* gene was made using primers flaB-downF and flaB-downR, and cloned into the corresponding sites of pMflaB01 to result in pMflaB02. Then, 1.2-kb kanamycin resistance gene was isolated from pUC4K (Pharmacia) and inserted into the BamHI site of pMflaB02 to produce pMflaB03. A 2,570-bp DNA fragment of pMflaB03 digested with ApaI and SacI was ligated to a suicide vector, pDM4 (1), to generate pMflaB04. *E. coli* SM10λ*pir* strain carrying pMflaB04 was conjugated with *V. vulnificus* MO6-24/O, and the exconjugants were selected on the thiosulfate citrate bile sucrose (TCBS) medium supplemented with 4 μg/ml chloramphenicol (2). Colonies with characteristics indicating a double homologous recombination event were isolated (resistance to 5% sucrose, sensitivity to chloramphenicol, and resistance to kanamycin) (2). Deletion of *flaB* gene in candidate colonies was confirmed by PCR with primers, flaB-upF and flaB-downR, and named Δ*flaB*.

A 821-bp PCR product containing the flaD upstream region was amplified using primers, flaD-upF and flaD-upR, and then cloned into pBlueScript SKII(+) to produce pMflaD01. A 552-bp PCR product was made to contain downstream region of flaD gene using flaD-downF and flaD-downR, and cloned into the corresponding sites of pMflaD01 to produce pMflaD02. The ApaI-XbaI DNA fragment of pMflaD02 was ligated into pDM4 to produce pMflaD03. The resultant plasmid in $E.\ coli$ SM10 λpir strain was mobilized to $\Delta flaB$, and the exconjugants were selected as described above. Colonies with characteristics indicating a double homologous recombination event were isolated as described above. Deletion of flaD gene in candidate colonies was confirmed by PCR with primers,

- flaD-upF and flaD-downR, and named $\Delta flaBD$.
- 131 A flaC upstream region of 905-bp was amplified using two primers, flaC-upF and flaC-upR. PCR
- product was cloned into pBlueScript SKII(+) to produce pMflaC01. A 780-bp DNA fragment
- 133 containing downstream region of *flaC* gene was amplified using primers flaC-downF and flaC-downR,
- and cloned into the corresponding site of pMflaC01 to produce pMflaC02. A 1,190-bp DNA fragment
- of pMflaC02 digested with ApaI and SacI was ligated to pDM4, to generate pMflaC03. E. coli
- SM10 λpir strain carrying pMflaC03 was conjugated with $\Delta flaBD$ and the exconjugants were selected
- as described above. Colonies with characteristics indicating a double homologous recombination
- event were isolated as described above. Deletion of *flaC* gene in candidate colonies was confirmed by
- PCR with primers, flaC-upF and flaC-downR, and named $\Delta flaBDC$.
- 140 A 780-bp PCR product containing the *flaA* upstream region was amplified using flaA-upF and flaA-
- upR, and then cloned into pBlueScript SKII(+) to produce pMflaA01. A 600-bp PCR product was
- made to contain downstream region of *flaA* gene using flaA-downF and flaA-downR, and cloned into
- the corresponding sites of pMflaA01 to produce pMflaA02. The SalI-Xbal DNA fragment of
- pMflaA02 was ligated into pDM4 to produce pMflaA03. The resultant plasmid in *E. coli* SM10λ*pir*
- strain was mobilized to $\Delta flaBDC$, and the exoconjugants were selected as described above. Colonies
- with characteristics indicating a double homologous recombination event were isolated as described
- above. Deletion of *flaA* gene in candidate colonies was confirmed by PCR with primers, flaA-upF and
- 148 flaA-downR, and named $\Delta flaABDC$.
- (ii) Construction of *flaE::nptI* mutant. A flanking region of the *flaE* (1,156-bp) was amplified from the
- genomic DNA of *V. vulnificus* MO6-24/O using the following two primers: flaE-up and flaE-down.
- The PCR product was the cloned in to pBlueScript SKII(+) to produce pMflaE01. A 1.2-kb
- kanamycin resistance gene was isolated from pUC4K and inserted into the PstI site of pMflaE01 to
- produce pMflaE02. About a 2.4-kb DNA insert from pMflaE02, digested with ApaI and SacI, was
- 154 ligated to a suicide vector pDM4 to generate pMflaE03. An E. coli SM10λpir strain carrying
- pMflaE03 was conjugated with *V. vulnificus* MO6-24/O and the exconjugants were selected on LBS
- medium supplemented with kanamycin. Colonies with characteristics indicating a double homologous
- recombination were further confirmed by PCR using flaE-up and flaE-down, and named strain
- 158 flaE::nptI. For complementation of the flaE mutant, a 1,135-bp DNA fragment containing V. vulnificus
- 159 flaE gene, which had been amplified using two primers, flaE-comF and flaE-comR, was cloned into a
- broad-host-range plasmid pRK415. The resultant plasmid, pRK415-flaE, was transformed into E. coli
- 161 SM10λ*pir* and then transferred to *flaE::nptI V. vulnificus* by conjugation.
- 162 (iii) Construction of *flaF* deletion mutant. A 780-bp PCR product containing the *flaF* upstream region

```
was amplified using primers, flaF-upF and flaF-upR, and then cloned into pBlueScript SKII(+) to
```

- produce pMflaF01. A 910-bp PCR product was made to contain downstream region of flaF gene
- using flaF-downF and flaF-downR, and cloned into the corresponding sites of pMflaF01 to produce
- pMflaF02. *nptI* encoding a kanamycin resistance enzyme was isolated from pUC4K, and inserted into
- pMflaF02 to generate pMflaF03. The ApaI-SacI DNA fragment of pMflaF03 was ligated into pDM4
- to produce pMflaF04. The resultant plasmid in E. coli SM10λpir strain was mobilized to V. vulnificus
- MO6-24/O, and the exconjugants were selected as described above. Colonies with characteristics
- indicating a double homologous recombination event were isolated as described above. Deletion of
- 171 flaF gene in candidate colonies was confirmed by PCR with primers, flaF-upF and flaF-downR, and
- named $\Delta flaF$. For complementation of the flaF mutant, a 1,161-bp DNA fragment containing V.
- 173 vulnificus flaF gene, which had been amplified using flaF-comF and flaF-comR, was cloned into
- pRK415. The resultant plasmid, pRK415-flaF, was transformed into *E. coli* SM10λ*pir* and then
- transferred to $\Delta flaF V$. vulnificus by conjugation.
- 176 (iv) Construction of *flaEF* deletion mutant. A 768-bp PCR product containing the *flaE* upstream
- region was amplified using primers, flaE01-upF and flaE01-upR, and then cloned into pBlueScript
- 178 SKII(+) to produce pMflaE 01. A 854-bp PCR product was made to contain downstream region of
- 179 flaE gene using flaE01-downF and flaE01-downR, and cloned into the corresponding site of pflaE 01
- to produce pMflaE 02. The SalI-SacI DNA fragment of pMflaE 02 was ligated into pDM4 to
- produce pMflaE 03. The resultant plasmid in E. coli SM10λpir strain was mobilized to V. vulnificus
- $\Delta flaF$, and exconjugants were then selected as described above. Colonies with characteristics
- 183 indicating a double homologous recombination event were isolated as described above. Deletion of
- 184 flaE gene in candidate colonies was confirmed by PCR with primers, flaE01-upF and flaE01-downR,
- and named $\Delta flaEF$. For complementation of flaE or flaF, E. $coli\ SM10\lambda pir$ containing pRK415-flaE
- or pRK415-flaF was mobilized to Δ*flaEF V. vulnificus* by conjugation, respectively.
- 187 (v) Construction of *flaJ* deletion mutant. A 806-bp *flaJ* upstream region (from -798 to +8 relative to its
- 188 IC) was amplified from the genomic DNA of V. vulnificus MO6-24/O using primers, flaJ-upF and
- flaJ-upR. The PCR product was cloned into pBlueScript SKII(+) to produce pSKflaJ01. A DNA
- 190 fragment containing 651-bp downstream of the *flaJ* ORF (from +390 to +1,040 relative to its IC) was
- 191 generated using primers flaJ-downF and flaJ-downR, and cloned into the corresponding sites of
- pSKflaJ01 to produce pSKflaJ02. A 1,457-bp DNA fragment from pSKflaJ02, digested with SalI and
- 193 XbaI, was ligated to a pKAS32 (3). pKAS-flaJ in *E. coli* SM10λ*pir* was mobilized to a *V. vulnificus*,
- and the conjugates were selected by plating the conjugation mixture of E. coli and V. vulnificus on
- 195 LBS supplemented with 4 µg/ml of ampicillin. V. vulnificus colonies with characteristics of double
- homologous recombination event were further confirmed by PCR using primers, flaJ-upF and flaJ-

- 197 downR. The confirmed cell was named $\Delta flaJ$.
- 198 (vi) Construction of *flhA* deletion mutant. A *flhA* upstream region of 590-bp was amplified from the
- 199 genomic DNA of *V. vulnificus* MO6-24/O using two primers, flhA-upF and flhA-upR. The PCR
- product was then cloned into a plasmid, pBluescript SKII(+) to produce pYflhA01. A 890-bp DNA
- fragment containing downstream region of the *flhA* gene was made using primers flhA-downF and
- 202 flhA-downR, and cloned into the corresponding sites of pYflhA01 to result in pYflhA02. Then, 1.2-
- 203 kb kanamycin resistance gene was isolated from pUC4K, and inserted into the BamHI site of
- pYflhA02 to produce pYflhA03. A 2,680-bp DNA fragment of pYflhA03 digested with ApaI and SpeI
- was ligated to a suicide vector, pDM4, to generate pYflhA04. E. coli SM10λpir strain carrying
- pYflhA04 was conjugated with V. vulnificus MO6-24/O, and the exconjugants were selected as
- described above. Candidate mutant colonies were confirmed by PCR using primers, flhA-upF and
- flhA-downR, and named $\Delta flhA$. For complementation of the flhA mutant, a 2,103-bp DNA fragment
- 209 containing V. vulnificus flhA gene, which had been amplified using two primers, flhA-comF and flhA-
- comR, was cloned into pRK415. The resultant plasmid, pRK415-flhA, was transformed into E. coli
- SM10 λpir and then transferred to $\Delta flhA$ by conjugation.
- 212 (vii) References
- 213 1. Milton DL, O'Toole R, HÖrstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of
- 214 Vibrio anguillarum. J Bacteriol 178:1310-1319.
- 2. Park KJ, Kang MJ, Kim SH, Lee HJ, Lim JK, Choi SH, Park SJ, Lee KH. 2004. Isolation and
- characterization of rpoS from a pathogenic bacterium, Vibrio vulnificus: role of σ^{S} in survival of
- 217 exponential-phase cells under oxidative stress. J Bacteriol 186:3304-3312.
- 3. Skorupski K, Taylor RK. 1996. Positive selection vectors for allelic exchange. Gene 169:47-52.